Enrollment No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous) Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION APRIL – 2017

M. Sc. Mathematics

16PMTCC07 - TOPOLOGY - II

Duration of Exam - 3 hrsSemester - IIMax. Marks - 70

<u>Part A</u> (5x2 = 10 marks)

Answer ALL questions

- 1. Let X be the subspace [-1, 1] of the real line. The set [-1, 0] and (0, 1] . form a separation of X. Is this statement TRUE? Justify.
- 2. Define: i) Subnet ii) A Free filter.
- 3. Specify base for the box topology on a collection $\{(X_r, \ddagger_r) | r \in \Lambda\}$ of topological spaces (with $\boldsymbol{\mathcal{T}}_r$ as its topology).
- 4. Define: i) Covering of a space. ii) Bolzano-Weierstrass property.
- 5. Give an example with explanation: A topological space which is both Compact and locally compact space.

<u>Part B</u> (5X5 = 25 marks) Answer <u>ALL</u> questions

6a. If (X, \mathcal{J}) and (Y, \mathcal{J}) are connected topological spaces and $f:(X, \mathcal{J}) \to (Y, \mathcal{J}')$ is a continuous map then prove that f(X) is also a connected space.

OR

- 6b. Prove that the collection of connected subspaces of a topological space (X, \mathcal{F}) that have a point in common is connected.
- 7a. Let (X, \mathcal{J}) be a topological space and $x \in X$. Suppose Λ is a fixed nbhd base at $x \in X$. Define the order in Λ as
 - $U_1 \quad U_2 \Leftrightarrow U_2 \subset U_1 \text{ for } U_1, U_2 \in \mathcal{U}_{\mathcal{X}} = \Lambda \text{ then prove that}$
 - (i) The $\Lambda = \mathcal{U}_{\mathcal{X}}$ along with the relation \leq is a directed set (Λ ,).
 - (ii) If we take some $x_U \in U$, $\forall U \in \Lambda$ then $(x_U)_{U \in \Lambda}$ is a net on X and
 - (iii) Prove that $x_U \to x$.

OR

7b. Let (X, \mathcal{F}) be a topological space and $x \in X$. If $E \subset X$ the $x \in \overline{E} \Leftrightarrow$ there is a net $(x_{j})_{j \in \Lambda}$ in E with $x_{j} \to x$. 8a. Let (X, \mathcal{F}) be a topological space. Let be a set. Let p: $(X, \mathcal{F}) \to Y$ be an onto(surjective) map consider the collection $\mathfrak{I}_p = \{U \subset Y / p^{-1}(U) \in \mathfrak{I}\}$ then prove that \mathfrak{I}_p is a topology Such that p: $(X, \mathcal{F}) \to Y$ is continuous.

OR

- 8b. Define: Quotient mapping, Let X=R with usual topology T_U on it, Y = {a, b, c} p(x) = a if x>0, = c if x = 0 = b if x < 0 then prove that
 i) p is a quotient map.
 - ii) Specify what is the quotient topology on it.
- 9a. Let (X, \mathcal{J}) and (Y, \mathcal{J}') be topological spaces. If $x_0 \in X$ and Y is compact then $x_0 \times Y$ is compact subspace of $X \times Y$.

OR

- 9b. Let (X, \mathcal{F}) be a Hausdorff topological space, Let $Y \subset X$ be compact subspace of X. Let $x_0 \in X$ be such that $x_0 \notin Y$ then there exist $U, V \in \mathfrak{I}$ such that $U \cap V = W$, $x_0 \in U$ and $Y \subset V$.
- 10a. Let (X, \mathcal{F}) be a Hausdorff topological space, then X is locally compact iff for every x in X and for every nbhd U of x and there exist a nbhd V of x such that \overline{V} is compact and $\overline{V} \subset U$ {*i.e.* $x \in V \subset \overline{V} \subset U$ }

OR

10b. Prove that compactness implies limit point compactness.

<u>Part C</u> (5X7 = 35 marks) Answer <u>ALL</u> questions

11a. Define: Locally Path Connected Space at a point. Let (X, \mathcal{F}) be a topological space. Let (A, \mathcal{F}_A) be a connected subspace of X and let B be a subset of X such that $A \subset B$ and $B \subset \overline{A}$ (i.e. $A \subset B \subset \overline{A}$) then prove that (B, T_B) is connected.

OR

11b. Define: Path Component.

Let (X, \mathcal{J}) be a connected topological space and let (Y, \mathcal{J}') be a simply ordered set equipped with the usual ordered topology \mathcal{J}' on Y. Let $f:(X, \mathcal{J}) \to (Y, \mathcal{J}')$ be a continuous function then prove that, if a, $b \in X$, and $r \in Y$ are $\ni f(a) < r < f(b)$ then $\exists a$ point $c \in X \ni f(c) = r$.

- 12a. If (X, \mathcal{F}) is a topological space and if $(x_{j})_{j \in \Lambda}$ is an ultra net in X, and $f: X \to Y$ then $(f(x_{j}))_{j \in \Lambda}$ is an ultra net in Y. Describe and justify any two properties of a filter.
- OR
- 12b. Suppose (X, \mathcal{F}) and (Y, \mathcal{F}) are topological Space, then $f: X \to Y$ is continuous mapping at $x_0 \in X$, then $f: X \to Y$ is continuous at $x_0 \in X \leftrightarrow F \to x_0$ then $f(F) \to x_0$
- 13a. Define: Quotient Topology.Let (X, *J*) be a topological space. Let Y be any set, then prove that p is a quotient mapping if the following condition holds,

"A is subset of Y is closed iff and p⁻¹(A) is closed."

OR

13b. Define: Product topology on $X_1 \times X_2 \times X_3 \times \dots \times X_n$.

Let X = RxR and Y = R and let $\prod_{i} : R \times R \to R$ for every $(x, y) \in R \times R$ then prove that \prod_{i} is continuous, open, and surjective mapping.

14a. Define: Compact Topological Space. Let A and B be disjoint Compact subsets of a Housdorff space (X, $\boldsymbol{\mathcal{J}}$) then prove that there are disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

- OR
- 14b. If (X, \mathcal{F}) and (Y, \mathcal{F}) are compact topological Space then prove that product $X \times Y$ is also a compact topological space.
- 15a. Let (X, T) be a topological space.

Assume that the space X is locally compact Hausdorff space iff there exist space Y satisfying following conditions,

- (i) X is a subspace of Y.
- (ii) The set Y-X consists of a single point.
- (iii) Y is a compact Hausdorff topological space.

Only prove the following

- (1) X is a subspace of Y. (2) Y is a Hausdorff space.
- OR
- 15b. Define: Compactification.

Let (X, $\boldsymbol{\mathcal{J}}$) be a topological space then prove that X is compact iff for every collection $\mathcal{A} = \{A_r \mid r \in \}$ of closed subsets of X with finite intersection property then $\bigcap_{r \in I} A_r \neq \mathbb{W}$.